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Micromotion-enhanced fast entangling gates for trapped-ion quantum computing
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Radio-frequency-induced micromotion in trapped ion systems is typically minimized or circumvented to avoid
off-resonant couplings for adiabatic processes such as multi-ion gate operations. Nonadiabatic entangling gates
(so-called “fast gates”) do not require resolution of specific motional sidebands and are, therefore, not limited to
time scales longer than the trapping period. We find that fast gates designed for micromotion-free environments
have a significantly reduced fidelity in the presence of micromotion. We show that when fast gates are designed
to account for the radio-frequency-induced micromotion, they can, in fact, outperform fast gates in the absence
of micromotion. The state-dependent force due to the laser induces energy shifts that are amplified by the state-
independent forces producing the micromotion. This enhancement is present for all trapping parameters and is
robust to realistic sources of experimental error. This result paves the way for fast two-qubit entangling gates on
scalable two-dimensional architectures, where micromotion is necessarily present on at least one interion axis.
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I. INTRODUCTION

Quantum computing offers the promise of boosting our
current computational capabilities, outperforming certain
known classical algorithms, and allowing tractable simula-
tions of complex quantum systems [1]. To realize this po-
tential, a quantum information processing (QIP) architecture
must be able to scale to large numbers of qubits. Many
platforms have been proposed as QIP architectures including
superconducting qubits [2], defect centers in diamonds [3],
single photons [4], NMR [5], topological qubits [6], quantum
dots [7], and spin-spin interactions in silicon donor sites
[8]. Significant progress towards the requirements for scal-
able quantum computing has been made on these platforms,
demonstrating single- and two-qubit fidelities [9–14] above a
98% fault-tolerant threshold. However, these platforms have
been limited either by scalability or by the number of high-
fidelity operations achievable before state decoherence. To
date, trapped ions have been a front-runner of QIP archi-
tectures, making a number of important demonstrations to-
wards scalable fault-tolerant quantum computing. These have
included the deterministic entanglement between 20 atomic
qubits [15], the use of hybrid quantum-classical computer to
find the ground-state energy of simple molecules [16], the
topological protection and error correction of a qubit state
[17], and analog quantum simulation of phase transitions
using 53 qubits [18]. These are important demonstrations of
the control and procedures required for scalable fault-tolerant
quantum computing.

A key limitation in all QIP platforms is the number of
independent, high-fidelity two-qubit gate operations that can
be achieved within the decoherence time of the qubit. Fault-
tolerant quantum computation requires that enough of these
operations can be conducted with high enough fidelities to
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correct for errors in both the gate operations and state de-
coherence. For surface codes, these limits are modest and
can enable fault-tolerant computation with fidelities as low
as 98% [9]. In this paper we use a more stringent threshold
of 99.98% as a guide, achievable using a Bacon-Shor code
with n = 10 [19]. Numerous implementations of sideband-
resolving adiabatic gates have demonstrated fidelities above
the 98% fault-tolerant threshold. For example, Bell-state fi-
delities of 99.9% and above [20,21] have been demonstrated,
and a gate fidelity of 99.8% has been demonstrated with
randomized benchmarking [22]. With the larger numbers of
qubits needed for computation beyond classical capability
these gates require longer operation times [23], preventing
classically unrealizable computation within the decoherence
time.

Fast gates using ultrafast pulses are poised to resolve this
situation [24–27]. These gate schemes use state-dependent
kicks (SDKs) from ultrafast π pulses to the ions, inducing
state-dependent motion. This results in a state-dependent
phase shift mediated by the Coulomb interaction. High-
fidelity gates 100–1000 times faster than sideband-resolving
gates can theoretically be achieved with current laser technol-
ogy [26,28]. Schemes with ultrafast pulses have recently been
used to create Schrödinger cat states [29] and to prepare Bell
states [30]. Similar schemes using an amplitude-modulated
continuous laser creating a dipole force to prepare Bell states
have also been demonstrated [31]. So far, these schemes have
only been applied to linear Paul traps in which the ions are
arranged linearly in a common trap. This architecture poses
some difficulties in scaling to larger numbers of qubits. When
the number of ions in the trap is increased, the longitudinal
trapping frequency must be lowered to prevent buckling of
the ion chain, which then slows both adiabatic and fast gates
conducted on the longitudinal motional modes [26,32].

Ion traps use an oscillating radio-freqency (RF) potential
to generate a three-dimensional (3D) trapping potential. The
resulting dynamics approximate a simple harmonic oscillator,
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but with the addition of a rapid oscillation. This fast oscil-
lation induced by the oscillating RF potential is referred to
as micromotion [33] or intrinsic micromotion. While for a
perfect trap it is entirely deterministic and entirely in the
radial plane, trap imperfections cause this motion to be com-
plicated and coupled into the axial modes. This is typically
called “excess micromotion,” and considerable effort goes
into reducing this in experiments. Even in perfect traps, the
“intrinsic” micromotion still exists. It has largely been treated
as an undesirable effect, as it complicates the use of the radial
mode, which would otherwise provide the benefit of operating
at a higher trapping frequency. This effect is minimized for
adiabatic entangling gates, where it has been shown that it
does not inhibit the ability to apply high-fidelity entangling
operations for sideband-resolving geometric phase gates using
a continuously shaped laser pulse [34] or by addressing the
micromotion sidebands [21,35].

We show that fast gates are more affected by micromotion
and that gates designed without awareness of the micromo-
tion have dramatically reduced fidelity. We speculate that
micromotion may have been a contributing factor to the low
fidelities observed in [30]. Micromotion would also impact
the operation of gates in 2D architectures such as microtraps
[36], as the coupled modes in the gate scheme cannot all be
orthogonal to the micromotion axes.

Fortunately, designing fast gates with foreknowledge of the
micromotion leads to good news: we find that the fidelity can
be increased for some experimentally accessible parameter
regimes. It is interesting that the state-independent forces in
micromotion can in fact enhance the rate of phase accumula-
tion from the state-dependent forces of the laser pulses. This
improvement is present both in the radial modes of a linear
Paul trap and in the transverse modes of a microtrap system
and exists for all trap parameters. We also show that these
gates are robust to realistic sources of experimental error.

II. MODEL

Ions can be trapped in three dimensions by a time-averaged
potential. The time-dependent potential used to generate this
trapping is given by

�(x, y, z, t ) = U

2
(αx2 + βy2 + γ z2) + cos (ωRFt + φRF)

× Ũ

2
(α′x2 + β ′y2 + γ ′z2), (1)

which has previously been shown to lead to motion of the form
[33]

x(t ) = Aei βωRF
2 t

∞∑
j=−∞

Cje
i j(ωRFt+φRF )

+ Be−i βωRF
2 t

∞∑
j=−∞

Cje
−i j(ωRFt+φRF ), (2)

where A and B are arbitrary constants determined by boundary
conditions, βx, ax, and qx are given by

βx ≈
√

ax + q2
x

2
, ax = 4Z|e|Uα

mω2
RF

, qx = −2Z|e|Ũα′

mω2
RF

,

FIG. 1. (a) Diagram of a linear ion chain, as would be found
in linear Paul trap experiments. The lasers used to conduct the
two-qubit gates considered in this paper are applied orthogonal to
the axis along which the ions are aligned. (b) Diagram of the ions
trapped in individual microtraps. In this case, the gates considered
are conducted using lasers parallel to the ion chain.

and the coefficients {Cj} are determined by a continued
fraction with respect to βx, ax, and qx [33]. This equation
describes a motion with a secular trapping frequency of
ω = (1/2)βxωRF and an additional high-frequency oscillation,
which is referred to as micromotion. To ensure sufficient
numerical convergence of the optimized gates in this work,
it is necessary to take the above expansion over at least j =
−3 to j = 3 for values of q greater than ∼0.3. In the work
presented here the value βx is found using the MathieuChar-
acteristicExponent function provided by Mathematica. This
gives an accurate value for the exponent for all values of a
and q.

In this work we consider fast gates conducted between
neighboring ions in a linear chain of microtraps using the
motional modes aligned parallel to the chain of ions and
gates between neighboring ions in a linear Paul trap using
their radial modes. This is shown in Figs. 1(a) and 1(b),
respectively, and the potentials describing these architectures
are given by VM and VP, respectively,

VM = e2

4πε0

N−1∑
i=1

N∑
j=i+1

1

(( j − i)d + x j − xi )

+ 1

2
M

a − 2q cos (ωRFt )

4
ω2

RF

N∑
i=1

x2
i , (3)

VP = e2
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RF
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i=1

(
azz

2
i + (ax − 2qx cos (ωRFt ))x2

i

)
, (4)

where xi is the deviation of the ith ion in the chain from
its equilibrium, d is the separation between each microtrap,
ωRF is the RF drive frequency used to generate the trapping
potential, M is the ion mass, and N the number of ions in the
chain. We consider gates between neighboring ions using the
modes that are only coupled to the x axis for the microtrap
array model and the z axis in the linear Paul trap model. We
drop the subscripts for a, q, and β in the remaining discussion.

We use a normal mode expansion to describe the classical
coupled motion of the ions. This approximates the motion in
terms of N oscillatory modes, each mode described by some
frequency of oscillation ωp and coupling to the ions �bp. This
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is done by linearizing the potential around the ions’ stationary
points and is valid for sufficiently small displacements of
the ions around their stationary points. We use the secular
trapping period of the common motional mode 2π/ωCOM as
the natural time scale, as it simplifies the gate analysis, where
ωCOM can be expressed as ωCOM = 1

2βωRF. We then use the
nondimensional time τ given by τ = βωRF

4π
t . This will then

give the motion as

xi = Apbi
pei2π

ωp
ω

τ

∞∑
j=−∞

Cje
i4π j(τ+φRF )

β

+ Bpbi
pe−i2π

ωp
ω

τ

∞∑
j=−∞

Cje
− i4π j(τ+φRF )

β , (5)

with the amplitudes of each mode Ap and Bp and the phase
of the RF drive φRF relative to the time τ = 0, determined
by the choice of initial conditions. We note that to match
the phase evolution of the ordinary differential equation,
the first-order solution is not sufficient, and we need to take the
Fourier expansion in Eq. (5) to the third term. While the fre-
quency of the common motional mode will remain the
same as the secular frequency of the single-ion system ω,
the motion of the other secular modes will be different from
that of those derived in the absence of micromotion. To deter-
mine the motion of the secular modes, it is necessary to solve
the Hill equations resulting from the eigendecomposition of
the coupled ordinary different equations linearized about the
equilibrium position. The Hill equations for each of the modes
will take the form

− (2π )2

β2

∞∑
j=0

h j,p cos

(
4πτ

β

)
ϒp = d2ϒp

dτ 2
, (6)

where ϒp is some coordinate describing the modes’ displace-
ment, and the coefficients h j,p can be found in terms of the
equilibrium position,

h j,p =
∫ β/2

0

4βλ cos
( 4π jτ

β

)
(δ + 2x0,1(τ ))3

dτ. (7)

We truncate Eq. (6) to the first-order Fourier term, which is of
the form of a Mathieu equation,

− (2π )2

β2

(
ap − 2qp cos

(
4πτ

β

))
ϒp = d2ϒp

dτ 2
, (8)

where ap and qp are now mode specific. These can then be
used to find βp, which can be used to find the secular mode
frequency ωp as

ωp = βpωRF. (9)

In the case of a linear Paul trap the equilibrium remains
constant in time and the linearization results in a change in
the parameter ap for that mode. This will be given by

ap = a − β2κ2

(2π )2
. (10)

For a microtrap array it is necessary to find the periodic
crystal solution. This is the motion that the ions will under-
take without any excitation of the secular modes and may

be regarded as a form of “excess” micromotion in previous
analyses. This motion will be periodic with the RF-drive
frequency and will take the form

x0,i(τ ) = u0,i +
∞∑
j=1

u j,i cos

(
4π jτ

β

)
+

∞∑
j=1

w j,i sin

(
4π jτ

β

)
.

(11)

In particular, the two-ion case will take the form

x0,1(τ ) = u0 +
∞∑
j=1

u j cos

(
4π jτ

β

)
,

x0,2(τ ) = −u0 −
∞∑
j=1

u j cos

(
4π jτ

β

)
. (12)

The coefficients can be found using a continued series of
matrix determinants [37]. In this paper, we use an iterative
method, whereby an initial guess of this motion is made and
improved over a number of iterations. This is achieved by
using the trial solution as the initial condition for a numerical
ODE simulation of the motion for a time close to an integer
number of secular trap periods. The average position is then
used to adjust the constant component of the periodic crystal
solution. The Fourier components then form the coefficients
an. We have found that this method converges to the correct
periodic crystal solution.

III. GATE SCHEME AND OPTIMIZATION

A description of many of the features of this scheme and
optimization has been presented in [28] and is presented
here for convenience to the reader. Fast gates using ultrafast
pulses are implemented by illuminating a pair of ions with
a series of counter-propagating π pulse pairs. Each of these
counter-propagating pulse pairs induces a state-dependent
momentum kick on the incident ions, appearing as vertical
jumps in a phase-space diagram. By appropriately choosing
the arrival times and arrival orderings of the pulse pairs it is
possible to implement an entangling gate. The fully entangling
gate operation that can be implemented using this method
is the controlled phase (CPhase) gate, also referred to as a
controlled-zz gate, given as

ÛCPhase = ei π
4 σ z

1 σ z
2 . (13)

To enable a more tractable optimization of the gate fidelity,
the pulse pairs are organized into groups of pulses. These
groups are assumed to provide an instantaneous momentum
kick consisting of �z pulse pairs at times �t . We use a gate
scheme that is a generalization of the fast robust antisym-
metric gate (FRAG) scheme [27] (Fig. 2), which is in turn
a variant of the GZC scheme [38]. It consists of six groups
of counter-propagating π pulses incident on the ions to be
entangled. The timings of theses pulses and the number of
pulses in each pulse group are given by the vectors t and z,
respectively:

t = (−τ1,−τ2,−τ3, τ3, τ2, τ1),

z = (−n, 2n,−2n, 2n,−2n, n). (14)
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The sign of the components of z corresponds to changing
the direction of the initially incident pulse, and the factor of n
is an integer that characterizes the overall scale of numbers of
pulses in each pulse group.

To produce a high-fidelity CPhase gate the timings
(τ1, τ2, τ3) are optimized to give the desired gate. In the
original FRAG scheme proposal there was a strict ordering
of the magnitude of (τ1, τ2, τ3). In this implementation we do
not impose a strict ordering of the times (τ1, τ2, τ3), effectively
resulting in a set of six possible pulse schemes. The total gate
time τG is therefore twice the maximum of the values of τ1,
τ2, and τ3.

The optimization was carried out by using a large num-
ber of local optimizations within a bounded gate time. The
bounds are then incrementally increased and the new region
is searched. Using this method, we establish a relationship
between the allowed gate time and the gate infidelity.

We use the state-averaged fidelity F as the measure of a
gate’s performance in this work because it can be calculated
with a high efficiency [27,28,39]. Inclusion of the micromo-
tion adds additional terms to the analytic fidelity expression,
as detailed in Appendix C. As we are interested in gates with
fidelities close to unity, it is sensible to report this in terms
of the infidelity 1 − F . We then simplify this expression for
small errors in phase and motional restoration, giving the
infidelity expression as

1 − F ≈ 2

3
�φ2 + 4

3

∑
p

(
1

2
+ np

)

× ((
b1

p

)2 + (
b2

p

)2)
�Pp

2, (15)

where �φ is the error in the phase, �Pp is the displacement
of the pth mode in phase space, bn

p is the coupling of the pth
mode to the jth ion, and np is the mean phonon occupation
of the pth mode. Expressions for �φ and �Pp are given in
Eq. (17). We assume a thermal product state, with a mean
mode occupation of np = 0.1 throughout this work. This
assumption has been the basis throughout previous works
[27,28] and has been experimentally demonstrated [40]. For
larger mode occupations the infidelity will increase linearly
with np. The final quoted infidelities were confirmed by
directly integrating the ODEs for the classical phase-space
trajectories over the qubit basis states. The enclosed signed
area of these trajectories is used to calculate the geometric
phase, also known as the Berry phase.

For the purposes of designing fast gates for two-ion sys-
tems, traps are well characterized by the dimensionless param-
eter χ , which is the scaled difference between the breathing
and the common motional modes χ = ωBR−ω

ω
in the direction

of the laser-induced motion [28]. Expressions for χ in terms
of trap parameters depend on the geometry and are given in
Appendix B. In a linear Paul trap χ is negative for motion
in the radial modes, indicating a phase acquisition rate of
the opposite sign to gates conducted using the axial modes.
In this case, we optimize for a controlled phase gate with
opposite relative phase, which is equivalent up to single-qubit
π rotations.

The phase-space trajectories are more complicated for the
system evolving with micromotion. This comparison is shown

τ1τ2τ3−τ3−τ2−τ1

number of 
pairs of pulses 2n n2n−2n−n −2n

0

Pulse pair(b)

Train of pulse pairs(a)

FIG. 2. (a) Diagram of the pulse timing for the FRAG scheme.
The components z j of the z vector indicate the number of pairs of
pulses that hit the ion at each time τ j . The sign of z j indicates which
pulse within each pair [shown in (b)] reaches the ion first. This gives
the sign of the momentum kick imprinted on the ion.

in Fig. 3. These trajectories can be averaged to remove the
rapid oscillation induced by micromotion. In the case where a
continuous phase-space displacement is applied to the system,
the averaged trajectory will be well approximated by the
trajectory of the approximate harmonic trap, provided the
interaction is slow with respect to the RF drive. However,
when these interactions occur on time scales faster than the
RF drive, the averaged phase-space trajectories can differ
substantially from those that would be found using a simple
harmonic trapping approximation. The SDKs used in this
work provide a near-instantaneous momentum kick, consid-
erably faster than the RF oscillation. The averaged phase-
space displacements for these kicks will be larger or smaller
depending on when they are timed in the RF cycle. We define
μ as the relative increase in the maximum displacement of
the ions D over the maximum displacement of the ions in a
simple harmonic potential D′, achieved through a momentum
kick. This will be given as

μ ≈
(

1 − 2(β2 + 4)q cos(φRF)

(β2 − 4)2

)2

. (16)

By timing the arrival of the SDKs to particular times
in the RF cycle, it is possible to achieve faster gate times
using the same number of counter-propagating pulse pairs.
Here we investigate a scheme in which the gate is optimized
assuming all pulses arrive at the same point in the RF cycle.
This assumption simplifies the infidelity expression with the
inclusion of micromotion:

�Pp = 2μ

√
ω

ωp

∑
k

zk sin (ωptk ),

�φ =
∣∣∣∣∣∣
∑

p

8η2μ
ω

ωp
b1

pb2
p

∑
i �= j

ziz j sin (ωp|ti − t j |)
∣∣∣∣∣∣ − π

4
.

(17)

The factor μ in the acquired phase corresponds to the
change in the extent of the phase-space displacements due
to locking the π pulses to a particular point in the RF cycle.
The presence of this factor in the motional restoration terms
would decrease the fidelity of gates optimized without this
factor. When it is included in the optimization, the ideal
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(a) Without Micromotion (b) With Micromotion

FIG. 3. Dimensionless phase-space trajectories of the common motional (solid blue lines) and rocking (dashed orange lines) modes of
a two-ion fast gate conducted using the radial modes of a linear Paul trap. (a) Trajectories without micromotion, showing a clear motional
restoration indicated by the circular markers at the origin of the plot. The theoretical infidelity of this gate is roughly 10−12. (b) The same
fast-gate operation with the inclusion of micromotion. This clearly shows that there is no longer restoration of the modes, indicated by the two
markers showing the end of the trajectory far from the origin. The parameters a and q were set to 0.0 and 0.2, respectively; the theoretical
infidelity of this gate is now ∼0.5.

achievable fidelities are similar to the system in the absence of
micromotion. It does, however, increase the sensitivity of the
scheme to systematic pulse timing errors. This is an inherent
feature of achieving faster gate times, which necessitate larger
displacements in phase space.

The values of the parameter μ are shown in Fig. 4 for
values of a and q, with the perimeter of the plot marking out
the stable trapping regions of the ideal trap. It is noteworthy
that not all combinations of a and q presented in Fig. 4 are
stable in practice. This is due to the presence of resonances
induced by the nonlinearity of the trapping potential or trap
imperfections [41–43]. This typically limits experiments to
parameter choices with a value of μ less than 2.5. The full
expression of μ and its derivation are given in Appendix C.

1

2

3

4

5

FIG. 4. The values of μ are shown as color gradients over the
stable region of trapping parameters a and q. The region to the top
right of the image diverges towards ∞, but this is generally not a
useful region, as it results from RF frequencies close to the trapping
frequencies.

IV. IMPACT OF MICROMOTION AND MICROMOTION
ENHANCEMENT

We now look at the effect micromotion has on a two-qubit
gate that was optimized for a system without micromotion.
We observe a decreasing fidelity as the dynamic trapping
potential Ũ is increased, shown in Fig. 5. The dips in these
plots corresponds to phases that minimize the effects of mi-
cromotion on motional restoration, producing closed phase-
space trajectories. Taking into account the effects of a finite
repetition rate would further reduce the fidelities shown in
Fig. 5. As shown later, micromotion makes fast gate schemes
particularly sensitive to the finite repetition rate of the SDKs.
The successful implementation of a fast gate using state-
dependent kicks therefore requires both accounting for RF-
induced micromotion in the optimization process and either
using a finite repetition rate sufficiently faster than the RF
frequency or taking the finite repetition rate directly into
account in the optimization process. The latter is typically
computationally prohibitive.

We now examine gates that are designed to operate in the
presence of micromotion. The rate of phase acquisition will
be maximiezd when the pulses occur at the point in the
RF cycle where μ is maximized, corresponding to the time
at which the oscillating part of the potential is maximally
trapping. We thus examine the case where the repetition rate is
locked to the RF drive with a phase between them of φRF = π .
The phase φRF is defined in Eq. (1) as the phase of the driving
potential at t = 0, and this assumption means that it will be
the phase of the driving potential for all of our pulses.

We find that the performance of two-qubit gates improves
with the amount of micromotion, indicated by the infidelity
decreasing with increasing μ, which corresponds to an in-
creasing a and q. This improvement is shown in Fig. 6 for
both a microtrap array and the radial modes of a linear Paul
trap. Although only one choice of gate parameter n is shown,
the improvement is present for all choices of n. The plateaus
in the infidelity observed for some gate times can be attributed
to the antisymmetric nature of the gate scheme, which is not
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(a) No dc Offset (b) dc Offset For Fixed Frequency

FIG. 5. Gates that are optimized assuming an absence of micromotion typically have a decreasing fidelity under realistic amounts of
micromotion. We show infidelities for such gates plotted with respect to the phase offset between the first pulse in the gate and the RF drive.
Infidelities are shown for various values of q; the trends in both plots move up (increasing infidelity) with increasing values of q. (a) The value
of a is fixed at 0.0 and the values of q are from 5 × 10−3 (lowest-infidelity trend) to 1 × 10−1 (highest-infidelity trend). (b) a is chosen to
maintain an RF frequency 300 times the secular trapping frequency and the values of q are from 1 × 10−2 (lowest-infidelity trend) to 5 × 10−1

(highest-infidelity trend). The trap parameters are χ = 1.8 × 10−4, d = 100 μm, and ω

2π
= 1 MHz for both panels. Ideal gate infidelities

without micromotion were roughly 10−12, not shown on the scale of these plots. Increasing values of q indicate an increasing dynamic trapping
potential Ũ and show a reduced fidelity. The dashed black line shows the fault-tolerant threshold of 2 × 10−4. The dip in these plots corresponds
to an optimum in minimizing the effects of micromotion. This optimum remains constant when the pulses occur at fixed points within the RF
cycle, which is evidenced by the concurrence of these optima when the RF frequency is held constant with respect to the trapping frequency,
as in (b).

favored for gate times that are multiples of half a trapping
period [28]. The improvement is more significant for higher
values of q, although it is not monotonic in the proximity of
gate times that are multiples of half trap periods.

As stated at the end of Sec. III, not all choices of a and
q depicted as stable in Fig. 4 will be stable in experiments.
Stable trapping can be achieved with values of q ∼ 0.5 which
are used in current microtrap array implementations [36].
However, for these values to be useful for this scheme, a
very careful selection of a and q is required in this region
to appropriately align troughs in the RF oscillations to the

required pulse timings. This degree of control and freedom
may be difficult to achieve in practice, which may limit the
potential gate improvements. Even in these cases, it is still
important to design the gates to account for the micromotion.

V. FINITE REPETITION RATE

The optimized gates shown in Fig. 6 assume perfect phase
locking between the pulses and the RF drive, as well as large
instantaneous momentum kicks. In practice, the pulse groups
are composed of many small kicks. These small kicks can be

(a) Microtrap (Axial Modes) (b) Linear Paul Trap (Radial Modes)

FIG. 6. Infidelities of optimized two-qubit gates with pulses occurring at the π phase to the RF drive, equivalent to a repetition rate
locked to the trap RF drive frequency at this phase. Shown with increasing dynamic trapping potential Ũ , indicated by increasing values of μ.
(a) Microtrap architecture with χ = 1.8 × 10−4 (d = 100 μm, ω

2π
= 1 MHz) (b) Linear Paul trap using radial modes with χ = −1.4 × 10−2

(ωA/ωR = 1/6). The results represented by black triangles indicate the infidelities for equivalent systems without the inclusion of micromotion.
This shows that both systems benefit from a clear micromotion enhancement. The dashed black line shows the fault-tolerant threshold of
2 × 10−4. The plateaus in the infidelity observed for some gate times can be attributed to the antisymmetric nature of the gate scheme, which
is not favored for gate times that are multiples of half a trapping period. There is not a monotonic progression in (a) for some values of μ; this
is due to the proximity of these results to half-multiples of the trapping period. These trends show that fast gates conducted with the aid of
micromotion can be implemented with shorter gate times than gates conducted in the absence of micromotion.
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units of

FIG. 7. The fidelity of an entangling gate that was designed with
a repetition rate that is phase-locked to the RF drive, but implemented
without this condition. The gate uses 50 counter-propagating pulse
pairs (n = 5) and a total gate time of τG ∼ 2 trap periods. The
dynamic trapping parameter for these data is q = 0.2, and the ratio
between the RF driving frequency and the secular trapping frequency
is fRF/ fτ ≈ 12. This choice of parameters corresponds to a realistic
trapping regime and shows that high-fidelity gate solutions can be
found for current experimental traps.

made to occur near-simultaneously, using a series of optical
delay loops [44]. However, this is experimentally complex and
requires a high degree of accuracy in the pulse timings [28]. A
simpler implementation method is to produce pulses at a fixed
repetition rate and use a pulse picker to select a subset for use
in the gates. We must examine the effects of this approximate
implementation to ensure that it does not overly compromise
the achievable fidelity of the gate.

Although our gate schemes are designed assuming that
all the SDKs in the pulse groups occur instantaneously, in
Fig. 7 we examine the effect of implementing them using
nonsimultaneous pulses achievable with a finite repetition
rate. In order to use physically reasonable choices of RF drive
frequency, we adjust the pulse group timings of our gates to
ensure our phase-locking condition. The resulting infidelity
assuming an infinite repetition rate was ∼1 × 10−4. This
infidelity could be lowered by optimizing over the RF driving
frequency. Implementing these gates with a finite repetition
rate changes the fidelity significantly, but there are clearly a
large number of high-fidelity solutions possible for realistic
trapping parameters and for π -pulse repetition rates that have
already been demonstrated [45].

Perhaps surprisingly, some of the gates implemented with
a finite repetition rate, which are no longer technically phase
locked, were actually better than the phase-locked gates. The
large amount of scatter shows that these gate solutions are
highly sensitive to variations in frequency, but even the upper
edges of those solutions have promising fidelity.

VI. ROBUSTNESS

We now explore the robustness of these schemes to the
inevitable imperfections in experimental implementations.

A. Finite temperature

We begin by first examining the impacts to gate fidelity as
a result of higher-temperature ion crystals, in contrast to the

FIG. 8. Infidelity of FRAG gates under increasing mean mo-
tional occupation n, assuming that the mean occupation is equal
across all modes. This shows that these gates, and in fact any
high-fidelity gate using ultrafast π pulses, remains robust to the
temperature of the ion crystal. Certainly this will not be a limiting
factor to gate fidelities in the Doppler cooling limit, where n ≈ 10.

ion crystals with a mean motional occupation of n = 0.1 we
have assumed until now. If we assume that each mode has the
same mean motional occupation, the infidelity of an optimized
gate can be expressed as a function of this mean occupation
number. This is shown in Fig. 8, where it can be seen that
the gate remains robust even with large motional occupation
numbers of n = 100. While this is shown for a FRAG gate,
this is not unique to the FRAG scheme. This feature will be
present in any scheme utilizing ultrafast counter-propagating
π pulses.

In a similar vein, another form of error can arise due to
motional heating during the gate operation. This form of error
is investigated in more detail in [26]. This work showed that
heating events during the gate operation would effectively
destroy the gate operation, resulting in very low fidelities. This
makes the motional heating an important experimental consid-
eration, specifically, the motional heating on the modes that
are coupled for a gate operation. As such, for gates operated
on the radial modes, the motional heating in the axial modes
will have little impact on the fidelity of these gates. And while
the motional heating rate generally increases in longer ion
chains, this does not necessarily result in an increase in the
modes that are coupled during the gate operation.

B. Imperfect phase matching

We now examine what happens when the phase between
the pulses arriving and the RF drive is not exactly π . As shown
in Fig. 9(a), gates remain below error correction infidelity
thresholds until there are phase mismatches of the order of
1/16 of an RF period. The largest RF drives encountered in
most experiments are of the order of 100 MHz, equating to a
requirement for nanosecond accuracy of the pulse arrival time
with respect to the maximum in the RF trapping potential.

C. Trap characterization

The next form of experimental error we examine is the
effect of imprecise characterization of the trap, such as the
trapping frequencies or distances between microtraps. Such
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(a) Phase Error (b) Trap Parameter Error

FIG. 9. Plots showing the impact on infidelity arising from realistic experimental errors for a gate with an ideal infidelity of 10−9 in a
microtrap architecture, shown by the dashed blue line (χ = 1.3 × 1.8 × 10−4, τG = 1.0, n = 30, μ = 2.31), and a radial mode gate with an
ideal infidelity of 10−13 on a linear Paul trap, shown by the orange line (χ = −1.3 × 1.4 × 10−2, τG = 0.7, n = 12, μ = 2.31). Here τG is
the gate time and the multiplying factor of 1.3 is due to the effects of micromotion. (a) Errors in the phase between laser pulses and the RF
drive. (b) Response to an error �χ between the real value of χ and the value used to find an optimized gate. The dashed black line shows the
fault-tolerant threshold of 2 × 10−4.

errors would lead to an incorrect estimate of χ . Figure 9(b)
shows that gates are also robust to such errors, remaining
below error correction infidelity thresholds until errors of
approximately 2% of the true value of χ , corresponding to an
∼0.5% error in d or ∼1% error in ω. In the case of the radial
modes of a linear Paul trap, this corresponds to a 2% error
in the ratio between the longitudinal and the radial trapping
frequencies.

D. Imperfect pulses

Throughout the analysis of gate fidelities within this work
we assume that each π pulse is perfect. In any experimental
demonstration the π -pulse fidelity would be an important con-
tributing factor to the overall fidelity. The worst-case impact
of imperfect π pulses can be shown to result in a reduction in
fidelity that scales linearly with the number of π pulses. This
would give the overall fidelity Freal as

Freal ≈ (1 − 2Npε)F0, (18)

where ε is the population transfer error for each π pulse, Np

is the total number of π -pulse pairs in the gate sequence,
and F0 is the gate fidelity assuming perfect π pulses. A
detailed analysis of this error can be found here [46]. The
gates presented in this paper required between 50 (Fig. 7)
and 1000 π pulses. Therefore, to achieve the fault-tolerant
threshold infidelity of 2 × 10−4, a π -pulse error of between
2 × 10−6 and 2 × 10−8 would be necessary. The typical inten-
sity stability of pulsed lasers is lower than this, but this only
corresponds to pulse error when using square pulses. There
are well-explored shaped pulses or multipulse schemes that
correct the population transfer errors to first order [47,48].
Implementing them will be an extra experimental hurdle, but
thereafter pulse errors should not limit the fast gates.

E. Stray fields

Finally, we consider the effects of stray fields on gate
fidelities. Assuming that the stray fields vary slowly with
respect to the RF drive frequency, this error will result in a

relative difference in the secular trapping frequencies between
the two microtraps. This will be linearly proportional to the
relative intensity of the stray field and the trapping fields. We
simulate this error by applying a frequency offset to one of the
trapping potentials and solving for the classical trajectories
in phase space when the gate is applied. This is shown in
Fig. 10, which shows that although the difference between
the breathing mode and the common motional mode in a mi-
crotrap architecture is small (∼10−4), correspondingly larger
errors in the trapping frequencies (∼10−3) of the individual
traps do not result in significant fidelity loss. The relationship
between a static stray field and the secular trapping frequency
will be �ω

ω
∼ √

2 �E
E . To conduct high-fidelity gates it is

necessary to ensure that stray fields are no larger than 0.1%–
0.2% of the applied voltages used to generate the trapping
potential.

VII. CONCLUSION

We conclude that the micromotion present in ion trap
experiments, either in microtraps or in linear Paul traps, may

1-
F

Relative Di erence in Frequency (%)

FIG. 10. The gate infidelity shown as a function of the difference
in the secular trapping frequency between two harmonic trapping
potentials, shown as the percentage difference in the main plot and
the parts per million (ppm) difference in the inset.
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be harnessed to enhance the gate times and infidelities of fast
gates using ultrafast pulses. We have presented a technique
to implement this enhancement by locking the RF drive and
repetition rate and have also presented the conditions under
which repetition rates faster than the RF drive may be used
with a high fidelity. We have further shown that this method
remains robust to realistic experimental errors that would
be encountered when implementing such fast gates. Even in
parameter regimes where the inclusion of micromotion makes
only a small improvement, performing a high-fidelity fast gate
requires it to be taken into account. Implementing the gates
presented in this work requires considerable technical control
over the ultrafast pulses, which will be made significantly
easier as schemes are found with fewer required π -pulse
pairs.
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APPENDIX A: FIDELITY CALCULATIONS IN THE
ABSENCE OF MICROMOTION

The material presented in this Appendix has been pub-
lished in the Supplementary Material provided with [28] and
is reproduced here with permission for ease of reading. We
use numerical searches to find pulse timings that produce
high-quality gate operations, with the state-averaged fidelity
F, given as the integral of the square of the norm of the overlap
between the postgate state and the target state integrated over
all initial states. This is efficient to compute and it is strongly
related to other distance measures for high-fidelity gates. As
we examine fidelities extremely close to unity, we report the
infidelity 1 − F . This is a function of the phase mismatch
�φ around the target π/4 phase and the phase-space dis-
placement of the motional modes �Pp given without micro-
motion as

�Pp = 2
√

ω

ωp

∑
k

zk sin (ωptk ),

�φ =
∣∣∣∣∣∣
∑

p

8η2 ω

ωp
b1

pb2
p

∑
i �= j

ziz j sin (ωp|ti − t j |)
∣∣∣∣∣∣ − π

4
.

(A1)

For efficient computation of two-ion gates, we further
simplify this measure by using a truncated expansion of the
infidelity in these variables. Assuming a thermal product state
the infidelity is then given by

1 − F ≈ 2

3
�φ2 + 4

3

∑
p

(
1

2
+ np

)((
b1

p

)2 + (
b2

p

)2)
�Pp

2,

(A2)

where np is the mean motional occupation of the pth mode.
While this approximate form is efficient for generating gate

schemes, we use the full form when reporting achievable
fidelities, for example, in the presence of multiple ions. We
can see from Eq. (A3) that the infidelity for a two-ion system,
1 − F , depends on the Lamb-Dicke parameter η, the angular
frequencies’ collective motional modes ωn, the coupling of
the kth ion to the pth mode, bk

p, and the number of pulses in
the ith pulse train zi. The collective mode frequencies ωn can
be calculated from the mass of the ions M, the separation
of the microtraps d , and the trapping frequency ω of the
individual microtraps.

We search for pulse timings that produce the optimal gate
fidelity within a given time bound. This optimization is run
as a set of local gradient searches in the 3D parameter space
of the pulse timings, over a large set of initial gate sequences.
The highest fidelity of these local optimizations is then taken
to be the optimal gate for that cap in the gate time. Note
that the optimal gate occasionally takes less time than the
maximum allowed. By increasing the cap on the total gate
time and repeating this process, we map out the optimal
fidelity for fast gates as a function of the gate time.

APPENDIX B: KEY PARAMETER FOR
CHARACTERIZING TRAPS

The material presented in this Appendix has been pre-
viously published in the Supplementary Material provided
with [28] and is reproduced here with permission for ease of
reading. We see from Eq. (A3) that the system behavior de-
pends on the ratios of the frequencies of the collective modes.
These are in turn functions of the geometry, and the dimen-
sionless parameter ξ = d3ω2

α
, where α = e2

4πε0

1
M . Here e is the

electron charge, M the mass of the ions, and ε0 the vacuum
permittivity.

For a two-ion system, there is only one ratio, so it en-
tirely characterizes the behavior. We define χ as the normal-
ized difference between the breathing mode frequency and
the common motional mode frequency χ = ωBR−ω

ω
, which

can be expressed in terms of the more fundamental para-
meter ξ as

χ =
√

1

3

(
9 − βγ

1
3 + βγ

2
3
) − 1, (B1)

where

γ = 1 + 3(9 + √
3
√

27 + 2ξ )

ξ

and

β = 9 −
√

3
√

27 + 2ξ .

Its value lies in the range between 0 and
√

3 − 1. The upper
bound corresponds to the limit where both microtraps are
merged, which is the case for standard linear trap geometries.

When gates are conducted using the radial modes of ions
cotrapped in a linear Paul trap, the relevant ratio is that
between the rocking mode frequency ωR and the common
motional mode frequency in the transverse axis ωT . Tak-
ing the ratio of the axial and radial trapping frequencies to
be κ = ωA/ωT , the rocking mode frequency will then be
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ωR = (1 − κ )ωT . The parameter χ will then be given by

χ =
√

1 − κ2 − 1. (B2)

In this case the value of χ will be between −1 and 0. The
negative value of χ indicates a negative rate of phase acqui-
sition compared to the microtrap system or the longitudinal
modes of a linear Paul trap.

Even for three or more ions, the system is still well charac-
terized by χ , which is the normalized gap to the lowest energy
excitation in the system. This is because it defines the rate
of relative acquisition of phase between the excited and the
unexcited modes.

APPENDIX C: FIDELITY CALCULATIONS
IN THE PRESENCE OF MICROMOTION

To determine the correct expression for the fidelity we start
by deriving the positions and velocities of the ions under a
set of initial conditions. We do this for a general set of modes,
defined by frequencies ω, which makes this derivation suitable
for both microtraps and radial kicks for ions in a common
linear Paul trap. We then use this to derive an expression for
the phase acquired at the end of a series of instantaneous mo-
mentum kicks. The displacement from equilibrium of a single
ion with initial position and velocity x0 and v0, respectively, at
time τ = 0 in dimensionless time will be given by

xi,p(τ ) = 2β

ρ
v0

ω

ωp

(
sin

(
2π

ωp

ω
τ
)

(σc fc(τ ) + σs fs(τ )) + cos
(

2π
ωp

ω
τ
)

(σc fs(τ ) − σs fc(τ ))

)

+2β

ρ
4πx0

ω

ωp
sin

(
2π

ωp

ω
τ
)

(βσs fc(τ ) + 2 fc(τ )ζs − βσc fs(τ ) − 2 fs(τ )ζc)

+2β

ρ
4πx0

ω

ωp
cos

(
2π

ωp

ω
τ
)

(βσc fc(τ ) + 2 fc(τ )ζc + βσs fs(τ ) + 2 fs(τ )ζs), (C1)

where x0 and v0 have the same units, as dimensionless time is being used,

fc(τ ) =
∞∑

j=−∞
Cj cos

(
4 jπτ

β
+ jφRF

)
,

fs(τ ) =
∞∑

j=−∞
Cj sin

(
4 jπτ

β
+ jφRF

)
,

σc =
∞∑

j=−∞
Cj cos ( jφRF),

σs =
∞∑

j=−∞
Cj sin ( jφRF),

ζc =
∞∑

j=−∞
jCj cos ( jφRF),

ζs =
∞∑

j=−∞
jCj sin ( jφRF),

ρ = 4π (σc(βσc + 2ζc) + σs(βσs + 2ζs)), (C2)

and the coefficients Cj are given through the recurrence relationship shown below, obtained by substituting the solution into the
ODE governing the motion:

Cj+1 − DjCj + Cj−1 = 0,

Dj = (ax − (2 j + β )2)/qx. (C3)

By applying all pulses at the same fixed phase φRF in the micromotion cycle, the micromotion terms can be taken as a
constant factor in the expression with fc(τ ) = σc and fs(τ ) = σs. When we then consider the effect of an instantaneous pulse
group imparting momentum v0 at time τ = 0 the expression for the following motion will be given by

xi,p(τ ) = 2β

ρ

(
v0

(
σ 2

c + σ 2
s

) + 4πx0(2σcζs − 2σsζc)
)

sin
(

2π
ωp

ω
τ
)

+ 8βπx0 cos
(

2π
ωp

ω
τ
)
, (C4)

and the velocity by

vi,p(τ ) = 4π

ρ
v0 cos(2πτ )(σc(βσc + 2ζc) + σs(βσs + 2ζs)) + 4π

ρ
v0 sin(2πτ )(σsζc − σcζs)

− 4π

ρ
2πβx0

ω

ωp
sin(2πτ )

(
4βσcζc + 4βσsζs + 4

(
ζ 2

s + ζ 2
c

) + β2σ 2
c + β2σ 2

s

)
. (C5)
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After a series of instantaneous momentum kicks {Pj} at times {τ j} the position after the mth kick will be given by

xi,p,m(τ ) = 2β
(
σ 2

c + σ 2
s

)
ρ

ω

ωp

m∑
j=1

Pj sin
(

2π
ωp

ω
(τ − τ j )

)
(C6)

and the velocity will be given by

vi,p,m(τ ) = 4π

ρ

(
2σcζc + 2σsζs + βσ 2

c + βσ 2
s

) m∑
j=1

Pj cos

(
2π

ωp

ω
(τ − τ j )

)
+ 4π

ρ
(σsζc − σcζs)

m∑
j=1

Pj sin

(
2π

ωp

ω
(τ − τ j )

)

=
m∑

j=1

Pj cos

(
2π

ωp

ω
(τ − τ j )

)
+ 4π

ρ
(σsζc − σcζs)

m∑
j=1

Pj sin

(
2π

ωp

ω
(τ − τ j )

)
. (C7)

The geometric phase from a sequence of n pulses will be given by

ξ =
n−1∑

k

∑
i,p

(xi,p,k (τk+1)vi,p,k (τk+1) − xi,p,k (τk )vi,p,k (τk ))

= 2β
(
σ 2

c + σ 2
s

)
ρ

n−1∑
k

∑
i,p

⎛
⎝ ω

ωp

k∑
j=1

Pj sin

(
2π

ωp

ω
(τk+1 − τ j )

) k∑
j=1

Pj cos

(
2π

ωp

ω
(τk+1 − τ j )

)

− ω

ωp

k∑
j=1

Pj sin

(
2π

ωp

ω
(τk − τ j )

) k∑
j=1

Pj cos

(
2π

ωp

ω
(τk − τ j )

)

+ 4π

ρ
(σsζc − σcζs)

ω

ωp

(( m∑
j=1

Pj sin

(
2π

ωp

ω
(τk+1 − τ j )

)2

−
( m∑

j=1

Pj sin

(
2π

ωp

ω
(τk − τ j )

)2))
. (C8)

The double sine terms can then be shown to be equivalent to the motional restoration term. This term will be small, as part of
our optimization objective is to obtain motional restoration and, thus, can be neglected. Giving the expression for ξ as

ξ = 2β
(
σ 2

c + σ 2
s

)
ρ

n−1∑
k

∑
i,p

⎛
⎝ ω

ωp

k∑
j=1

Pj sin

(
2π

ωp

ω
(τk+1 − τ j )

) k∑
j=1

Pj cos

(
2π

ωp

ω
(τk+1 − τ j )

)

+ ω

ωp

k∑
j=1

Pj sin

(
2π

ωp

ω
(τk − τ j )

) k∑
j=1

Pj cos

(
2π

ωp

ω
(τk − τ j )

)⎞
⎠. (C9)

We denote the phase expression for an equivalent system without micromotion as ξ0, given as

ξ0 =
n−1∑

k

∑
i,p

⎛
⎝ ω

ωp

k∑
j=1

Pj sin

(
2π

ωp

ω
(τk+1 − τ j )

) k∑
j=1

Pj cos

(
2π

ωp

ω
(τk+1 − τ j )

)

+ ω

ωp

k∑
j=1

Pj sin

(
2π

ωp

ω
(τk − τ j )

) k∑
j=1

Pj cos

(
2π

ωp

ω
(τk − τ j )

)⎞
⎠; (C10)

the phase with micromotion can now be expressed as

ξ = β
(
σ 2

c + σ 2
s

)
(σc(βσc + 2ζc) + σs(βσs + 2ζs))

ξ0. (C11)

We can then define the term μ giving the increase in the maximum displacement D′ of the ion within the micromotion system
after an instantaneous pulse, scaled to the maximum displacement of the same system without micromotion D,

μ = D′ − D

D
= β

(
σ 2

c + σ 2
s

)
(σc(βσc + 2ζc) + σs(βσs + 2ζs))

, (C12)

giving the phase expression as

ξ = μξ0. (C13)
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The infidelity expression 1 − F , the motional restoration of the pth mode �Pp, and the phase error �φ will be given as

1 − F ≈ 2

3
�φ2 + 4

3

∑
p

(
1

2
+ np

)((
b1

p

)2 + (
b2

p

)2)
�Pp

2,

�Pp = 2μ

√
ω

ωp

∑
k

zk sin (ωptk ),

�φ =
∣∣∣∣∣∣
∑

p

8η2μ
ω

ωp
b1

pb2
p

∑
i �= j

ziz j sin (ωp|ti − t j |)
∣∣∣∣∣∣ − π

4
. (C14)
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